Approval Voting and Parochialism

JONATHAN BARON
NICOLE Y. ALTMAN
Department of Psychology
University of Pennsylvania

STEPHAN KROLL
Department of Economics
California State University at Sacramento

In hypothetical scenarios involving two groups (nations or groups of workers), subjects voted on three proposals: one helped group A (their group), one helped B, and one helped both groups, more than the average of the first two but less than their maximum. When subjects voted for one proposal, most voted for the one that helped group A. This result is “parochial” because it helps the voter’s own group even though it hurts the other group more. When voters could approve two proposals, they tended to approve the third proposal as well, and it was more likely to win. Approval voting can thus reduce the effect of parochialism, a bias toward one’s own group, on election outcomes. In a second experiment, the authors replicated this effect using real-money payoffs.

Keywords: approval voting; voters; parochialism

The tendency of people to favor a group that includes them, at the expense of outsiders and even at the expense of their own self-interest, has been called parochialism (Schwartz-Shea and Simmons 1991). A prime example is nationalism, a value that goes almost unquestioned in many circles, just as racism and sexism went unquestioned in the past. Nationalists are concerned with their fellow citizens, regardless of the effect on outsiders. Nationalists are willing to harm outsiders (e.g., in war) for the benefit of conationals.

An experiment by Bornstein and Ben-Yossef (1994) shows a parochialism effect. Subjects came in groups of six and were assigned at random to a red group and a green group, with three in each group. Each subject started with 5 Israeli shekels (IS; about $2). If the subject contributed this endowment, each member of the subject’s group would get 3 IS (including the subject). This amounts to a net loss of 2 for the subject but a total gain of 4 for the group. However, the contribution would also cause each member of the other group to lose 3 IS. Thus, taking both groups into account, the gains for one group matched the losses to the other, except that the contributor lost the 5 IS. The effect of this 5 IS loss was simply to move goods from the other group to the subject’s group. Still, the average rate of contribution was 55 percent, and this was substantially higher than the rate of contribution in control conditions in which the contribution did
not affect the other group (27 percent). Of course, the control condition was a real social dilemma in which the net benefit of the contribution was truly positive.

Similar results have been found by others (Schwartz-Shea and Simmons 1990, 1991). Notice that the parochialism effect is found despite the fact that an overall analysis of costs and benefits would point strongly toward the opposite result. Specifically, cooperation is truly beneficial, overall, in the one-group condition and truly harmful in the two-group condition because the contribution is lost and there is no net gain for others.

This kind of experiment might be a model for cases of real-world conflict, in which people sacrifice their own self-interest to help their group at the expense of some other group. We see this in strikes, as well as in international, ethnic, and religious conflicts, when people even put their lives on the line for the sake of their group and at the expense of another group. We also see it in attempts to influence government policy in favor of one’s own group at the expense of other groups, through voting and contributions of time and money. We can look at such behavior from three points of view: the individual, the group, and everyone (the world). Political action in favor of one’s group is beneficial for the group but (in these cases) costly to both the individual and the world.

PAROCHIALISM AND THE SELF-INTEREST ILLUSION

Parochialism may result from all the various mechanisms that cause people to cooperate (see Baron 2000). These include altruism, conformity, reciprocity, and various illusions, such as the voter’s illusion (Quattrone and Tversky 1984). In that illusion, people behave as if they thought their behavior would influence others, even though they know only that they and others are subject to common influence.

A second type of illusion that causes cooperation is the “illusion of morality as self-interest” (Baron 1997a). People seem to deny the existence of the conflict between self and others, the conflict that defines a social dilemma. Because morality and self-interest are usually correlated, people tend to overgeneralize and act as though the two are correlated even when they are not.

In a social dilemma, people try to reduce the apparent self-other conflict by convincing themselves that it does not exist. They may do this by telling themselves that “cooperation doesn’t do any good anyway, so I do not need to sacrifice my self-interest.” They may also do the opposite and convince themselves that cooperation is in their self-interest after all. They may focus on the slight self-interested benefit that accrues to them indirectly from their own cooperation and ignore the fact that this benefit is less than the cost of cooperating. (If it were not less than the cost, then we would not have a social dilemma after all.)

The self-interest illusion is particularly relevant to cooperation with members of a group that is competing with another group. People who sacrifice on behalf of others like themselves are more prone to the self-interest illusion because they see the benefits as going to people who are like themselves in some salient way. They think, roughly, “My cooperation helps people who are X. I am X. Therefore it helps me.”
This kind of reasoning is easier to engage in when X represents a particular group than when it represents people in general.

Supporting this explanation, Baron (2001) did an experiment following the design of Bornstein and Ben-Yossef (1994) in comparing cooperation within a single group with cooperation within a group when that group’s gain is another group’s loss (the two-group condition). The main addition was that subjects answer questions about their self-interest to test the hypothesis that the self-interest illusion is greater in the two-group condition.

Subjects did contribute more in the two-group condition than in the one-group condition (82 vs. 73 percent), replicating the parochialism effect. More important, the parochialism effect for contributing was highly correlated across subjects with the parochialism effects for the self-interest questions, including a question about which option would make more money for the decision maker. In other words, those subjects who showed a greater parochialism effect for contributing showed a greater self-interest illusion when the gain for their group was a loss for the other group.

When subjects were forced to calculate the effects of their contribution on themselves and others, the parochialism effect was reduced. Thus, parochialism is somewhat labile. As suggested by Singer (1982), it may be possible, through reason, to understand the arbitrariness of group boundaries. The more that people think of boundaries as arbitrary, the more they can direct their non–self-interested concern at the greater good rather than the parochial interests of their group.

Of course, the self-interest illusion can explain only part of the parochialism effect. Much of the rest of it may arise from a sort of limited altruism, in which people really do care about the good of the comembers more than about the good of outsiders.

PAROCHIALISM AND APPROVAL VOTING

One way in which people express their parochialism is in their political behavior, such as voting. They may vote for, or otherwise advocate, proposals that help their group at the expense of outsiders. Political behavior has at least a small cost, so such behavior is analogous to contributing an endowment to help one’s own group, as in the experiments just described. Both the outsiders and the individuals would benefit if the individuals did nothing (Bazerman, Baron, and Shonk 2001, chap. 4). Political behavior favoring groups such as nations, or interest groups within nations, is a major way in which parochialism expresses itself.

If we want to change parochial political behavior, so as to advance the greater good, we can try to educate people about such problems as the self-interest illusion, as just described. But another way to improve behavior is to change the rules through which people express themselves politically. Such a change might even facilitate the educational approach.

When competing interest groups both vote on a set of proposals or candidates, one such change in the rules is the institution of new voting schemes, such as approval voting (Weber 1995). In approval voting, voters say yes or no to each of several candidates or proposals. The option with the most approvals wins. By contrast, in standard plural-
ity voting, voters vote for one option, and the option with the most votes wins. Approval voting has many well-known advantages over plurality voting: the addition of minority candidates cannot swing the election to an otherwise less favored candidate, voters can express support for hopeless candidates without wasting their votes, voters can understand the system easily, laws and procedures require little modification, and, more generally, voters can more honestly express their preferences (Brams and Fishburn 1983). Approval voting would probably have changed the outcome of many elections, including the 2000 U.S. presidential election.

Approval voting could reduce parochialism if people could see themselves as members not only of their own group but also of the larger group that includes affected outsiders; they would then approve proposals consistent with both views. Such voters may be torn between the greater good for all and the demands of the self-interest illusion for their narrow group (Baron 1997b). Approval voting could also help if people base their vote on self-interest alone (once they decide to vote). It would not reduce parochialism if parochial voters cared only about their group.

Honest approval voting requires approval of all options above some cutoff in terms of desirability or utility. To maximize personal influence (under certain assumptions), one should put the cutoff at the mean utility of all the options (Brams and Fishburn 1983, chap. 5.5). With three options, this amounts to voting for the top two if the intermediate proposal is closer to the best than to the worst. This strategy would also be more likely than other strategies to select the option with the highest average utility.

The present experiment asked people how they would vote on three hypothetical proposals. One proposal, which we call Self (although the subjects did not see these names), is best for the voter’s group. It provides ten units more to each member of that group than does the proposal that is worst for that group. A second proposal, Other, is best for another equal-sized group, by ten units (compared to the worst for the other group). A third proposal, Best, provides six or eight units to each group (again, compared to the minimum). The total benefit from Best is thus greater than either Self or Other.

A voter who votes on the basis of group interest alone would vote for Self in a standard vote and for Self and Best in an approval vote (because Best is above the mean utility). The same would be true of a voter who suffers from the self-interest illusion but can apply this both to the narrow group and the inclusive group.

EXPERIMENT 1:
CAN APPROVAL VOTING REDUCE PAROCHIALISM?

Subjects completed a questionnaire involving hypothetical groups. The groups were either nations or groups of workers. The questionnaire also asked subjects whether paying to vote would be a good business proposition, to test the self-interest illusion. And it asked how subjects thought people in the other group would vote. This was included largely as a check on subjects’ attention. People think that others would respond much as they would (Dawes, McTavish, and Shaklee 1977; Dawes et al. 1986).
METHOD

Ninety-six subjects completed a questionnaire on the World Wide Web for $3. Their ages ranged from eighteen to sixty (median thirty-five), 27 percent were male, and 19 percent were students. They found the questionnaire page through links in other Web pages and through search engines.

The questionnaire had sixteen cases, four in each cell of a two-by-two design: groups are nations versus workers of different kinds and approval versus standard voting. The use of two different kinds of groups was merely an excuse to obtain additional data from each subject. The four items in each cell varied in the payoffs, as described later. Each of the sixteen cases was repeated twice (inadvertently). The questionnaire began as follows:

Referendum voting

This study concerns your attitudes about voting for proposals that affect your group and another group. In each case, imagine that you are voting in a referendum some time in the future.

Rules will be different then. In particular, in some of these cases, the vote will involve two nations.

You are asked if it is worthwhile to pay to vote. In these cases, imagine that the payment involves sending an absentee ballot by express mail.

In all cases, only one of three proposals will be adopted. There are two methods of voting. In the standard method, you see three proposals and vote for one. The proposal with the most votes wins.

The other method is called approval voting. You approve one proposal or two proposals out of three. The proposal with the most approvals wins.

For example, suppose

- 20 percent of the voters approve just proposal X,
- 20 percent approve just Y,
- 30 percent approve X and Z, and
- 30 percent approve Y and Z.

Z wins. Z has 60 percent approval. X and Y have 50 percent approval each.

The proposals are described in terms of their economic effects on your group and the other group. Assume the following:

- The economic effects are all that matter in this vote.
- You make $100,000 per year (in the currency of that time).
- The groups are similar in their standard of living.
- About half of the voters in each group actually vote.
- You are always in group A.

The individual items read as follows, with brackets enclosing alternative text for the different conditions (except for the numbers in the table, which will be explained later):

Group A is all the people who do the same work you do.
Group B is all the people who do a different kind of work.
Each group has 1,000,000 members in each country.
[Group A is the people who live in your country.
Group B is the people who live in another country of the same size.
Both groups vote. Each nation has 10,000,000 voters.]

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Income of Group A</th>
<th>Income of Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Increase by 10 percent</td>
<td>Increase by 2 percent</td>
</tr>
<tr>
<td>2</td>
<td>Increase by 0 percent</td>
<td>Increase by 12 percent</td>
</tr>
<tr>
<td>3</td>
<td>Increase by 6 percent</td>
<td>Increase by 8 percent</td>
</tr>
</tbody>
</table>

Which proposal(s) would you vote for [approve]?

1 2 3 [1 & 2 1 & 3 2 & 3]

From a strictly business point of view, is it a good bet for you to pay $10 to vote?

Yes Not sure No

What would you guess to be the most frequent choice of those in group B?

1 2 3 [1 & 2 1 & 3 2 & 3]

The alternative forms of the proposal table were as follows, where + indicates an increase and – a decrease:

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Group A (Percentage)</th>
<th>Group B (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+10</td>
<td>+2</td>
</tr>
<tr>
<td>2</td>
<td>+0</td>
<td>+12</td>
</tr>
<tr>
<td>3</td>
<td>+6</td>
<td>+8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Group A (Percentage)</th>
<th>Group B (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+10</td>
<td>+2</td>
</tr>
<tr>
<td>2</td>
<td>+0</td>
<td>+12</td>
</tr>
<tr>
<td>3</td>
<td>+8</td>
<td>+10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Group A (Percentage)</th>
<th>Group B (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+4</td>
<td>–4</td>
</tr>
<tr>
<td>2</td>
<td>–6</td>
<td>+6</td>
</tr>
<tr>
<td>3</td>
<td>+0</td>
<td>+2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Group A (Percentage)</th>
<th>Group B (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+4</td>
<td>–4</td>
</tr>
<tr>
<td>2</td>
<td>–6</td>
<td>+6</td>
</tr>
<tr>
<td>3</td>
<td>+2</td>
<td>+4</td>
</tr>
</tbody>
</table>

Note that for half of the alternative forms (those in the bottom row), the outcomes were reduced by 6 percent, so that some were losses. And for half of the forms (those
on the right), the benefit of proposal 3 was raised by 2 percent relative to the other two forms.

Notice also that B is better off by 2 percent consistently for the best outcome (proposal 2 for B, proposal 1 for A), the worst outcome (proposal 1 for B, proposal 2 for A), or the intermediate outcome (proposal 3 for both). The purpose of this is to avoid the possibility that subjects favor proposal 3 on grounds of fairness.1

RESULTS

As hypothesized, approval voting increases the support for the proposal that is best overall.

Table 1 shows the proportion of votes in each of the categories for standard voting and approval voting. Proposals 1, 2, and 3 are called Self, Other, and Best, respectively. The Self proposal is best for the Self, the Other proposal is best for the other group, and the Best proposal is best overall.

To compare the two voting procedures, we need to consider the fact that Self is proposal 1 for one group and Self is proposal 2 for the other group, while Best is proposal 3 for both groups. Both groups could vote for Best, but only one group, half of the voters, could be expected to vote for each of the Self proposals. For example, in approval voting, if 50 percent of the voters voted for Best and 90% of each group also voted for Self for their respective group, Best would win because the 90 percent would count as 45 percent for each of the two Self proposals. Thus, to compare the two voting methods, the number of Self votes must be divided by two before comparing them to the number of Best votes, assuming that voters on both sides distribute their votes in the same way among Self, Other, and Best. Votes for Other are just like votes for Self in this regard.

After dividing the Self and Other votes by two, we find that, in standard voting, either the Self or Other proposal would win on average, as they would each receive about \((66\% + 4\%) / 2 = 35\%\) of the vote, with 30 percent going to Best. In approval voting, however, the Best proposal would win with \(16\% + 42\% + 1\% = 59\%\), compared to \((36\% + 2\% + 2\% + 42\%) / 2 = 41\%\) for Self. Enough of the Self votes in standard voting were willing to approve Best so that it would win.

1. As it happens, on one of the thirty-two trials in the standard voting condition, by mistake, A did better than B. Data analysis removed this case and the corresponding trial in the approval voting condition.

<table>
<thead>
<tr>
<th></th>
<th>Self</th>
<th>Other</th>
<th>Best</th>
<th>Self & Other</th>
<th>Self & Best</th>
<th>Other & Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>66</td>
<td>4</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approval</td>
<td>36</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>42</td>
<td>1</td>
</tr>
</tbody>
</table>
To analyze the data by subject, we scored each response with respect to its contribution toward producing the best outcome (proposal 3). A vote for Best was counted as 1. A vote for Self, the best proposal for one’s group, was counted as –0.5. Again, this is because a vote for Self has, on average, half the effect of a vote for Best.

The voting score (as just defined) was significantly higher in approval voting (mean .20) than in standard voting (mean –.03, t_{95} = 6.17, p = .0000).²

In general, subjects showed a self-interest illusion. Asked if it would be a good business bet to pay $10 to vote, 87.5 percent said yes at least once, and 67.7 percent said yes more often than they said no. The mean answer to this question (if 1 is yes and –1 is no) was .33.³

The self-interest illusion (each subject’s mean answer to the payment question) correlated positively, across subjects, with the proportion of selfish voting (voting for Self or approving Self; r = 0.22, p = .0320, two-tailed), as would be expected if voting for one’s own group were a product of the illusion. This correlation was present in both the standard voting condition (r = .20, p = .0474) and the approval voting condition (r = .21, p = .0395).

Subjects thought that voters in the other group would vote according to the rules they used. The across-subject correlations between proportions of voting or approving Self, Best, and Other for one’s own vote and the corresponding proportions for the other group (where Self for the other group matches Other for one’s own group) were, respectively, .42, .45, and .55, all significant at p = .0000.

EXPERIMENT 2: DOES IT WORK WITH REAL MONEY?

We replicated, in broad outline, the first study using real money. A major difference to the first experiment was that we used two real groups—students from two different U.S. universities—to instill a feeling of group identity. Also, the vote outcomes decided how much money each subject would make, whereby each member of one group basically made the same amount of money.

Each subject responded to four conditions, knowing that one condition would be chosen at random to determine the payment. The four conditions varied plurality versus approval voting and compulsory versus optional voting. In the compulsory condition, a subject had to vote, while in the optional condition, a subject could choose whether to make a costly voting decision.

² The score was higher when the outcome of the Best proposal was higher (.18 vs. –.02; t_{95} = 9.27, p = .0000) and when the overall outcomes were higher (.13 vs. .03; t_{95} = 3.70, p = .0000), but it was not affected by type of group. Trial order had no significant effect on any response measure.

³ Subjects were more likely to say that payment was worthwhile when the payoff from proposal 3 was higher (.36 vs. .30; t_{95} = 2.62, p = .0102) or when the overall payoffs were higher (.44 vs. .24; t_{95} = 4.62, p = .0000), but the type of voting or type of group had no effect.
METHOD

Subjects were fifty-six students from the University of Pennsylvania and fifty-six from St. Lawrence University. Subjects did the four conditions in four different orders (which did not affect the results). The subjects knew they had to participate in four conditions, but in each condition, they had to make their decisions before they would learn what the next condition is. They did not learn the results from the preceding conditions. All subjects from one university were sitting in one room, but communication between them was not allowed.

The essential part of the instructions read as follows:

There are 56 participants in this experiment, 28 here at St. Lawrence University (including yourself) and 28 others at the University of Pennsylvania. The amount of money you earn in this experiment is determined by the decisions of all 56 participants.

This experiment consists of four segments. One segment out of the four will decide your monetary earnings. After the experiment is over we will randomly choose (by drawing a card) which segment is decisive. . . .

In all segments, you will earn tokens. The tokens in the segment that counts will be exchanged into money at an exchange rate 2 tokens = $1.

In all four segments, there are three proposals, which are presented below. Each proposal describes how many tokens participants at SLU and UPenn will earn. One of the three proposals will be adopted after a vote by all 56 participants, the 28 at SLU and the 28 at UPenn. The winning proposal determines how many tokens you earn, independent from for which proposal you voted.

The three proposals for each segment are as follows:

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Each Participant at SLU Will Get</th>
<th>Each Participant at UPenn will get</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 tokens</td>
<td>2 tokens</td>
</tr>
<tr>
<td>2</td>
<td>0 tokens</td>
<td>12 tokens</td>
</tr>
<tr>
<td>3</td>
<td>6 tokens</td>
<td>8 tokens</td>
</tr>
</tbody>
</table>

The standard and approval conditions were as follows:

Segment 1: Standard voting. You and the other fifty-five participants vote for one proposal. The proposal with the most votes wins. (If two proposals have the same amount of votes, a coin toss will decide which proposal wins.)

For which proposal do you vote? Check one box.

☐ 1 ☐ 2 ☐ 3

Segment 2: Approval voting. You and the other fifty-five participants approve one proposal or two proposals out of three. The proposal with the most approvals wins. (If two proposals have the same amount of votes, a coin toss will decide which proposal wins.)

4. The optional condition was never first because it was assumed to be more difficult. Otherwise, the conditions were counterbalanced.
For example, suppose

20 percent of the voters approve just proposal X,
20 percent approve just Y,
30 percent approve X and Z, and
30 percent approve Y and Z.
Z wins. Z has 60 percent approval; X and Y have 50 percent approval each.
Which proposals do you approve? Check one box.

The table of payoffs above shows that the UPenn subjects got higher payoffs than the SLU subjects (e.g., 12 vs. 10 for the Self condition). This was, again, to discourage subjects from using equality as a criterion. For half of the subjects at each site, the table was reversed so that the SLU participants got higher payoffs. We thus distinguish the high and low conditions: high means that the subject’s group got more than the other group.

The two other segments were the same except that subjects had to pay to vote. They were asked (e.g., in the standard condition) the following: “Are you willing to pay 2 tokens to be able to vote? You will have to pay these 2 tokens independent from which proposal will win the most votes (if this segment will be the decisive segment). If yes, please write your name down.” We call this the Optional condition.

RESULTS

In general, the results were similar to those of experiment 1, with some exceptions. If anything, subjects were more supportive of the Best proposal than in experiment 1, regardless of the method of voting, but approval voting still led to more support for it.

Figure 1 shows the mean scores favoring Best (Best – Self/2), as used in experiment 1, collapsed over the two sites. (The site did not affect the results significantly.) Approval voting does lead to higher scores overall. However, it leads to higher scores in the low group ($t_{55} = 3.40, p = .0013$; the high group shows no significant effect either way). It also scores higher in the Optional condition ($t_{111} = 2.21, p = .0295$; the Compulsory condition showed no effect either way).

The interaction between voting method (plurality/approval) and optionality was not significant, but the interaction between high/low and voting method was significant ($t_{110} = 2.98, p = .0035$; the triple interaction was also not significant). The interaction arises in part because the score is higher in the high condition than in the low condition ($t_{110} = 2.33, p = .0219$). The scores in the high condition are closer to the ceiling and have less room to change. Apparently, subjects are more open to helping the other group when they see that their group is favored.

Although experiments 1 and 2 differed in many ways, we can compare the results. Table 2 shows the results that are comparable to those in Table 1, collapsing across all variables not distinguished in the table. In general, subjects were more inclined to vote for Best in experiment 2 than in experiment 1, but otherwise the patterns were similar.
The results indicate that people can take the opportunity to approve proposals that are somewhat less good for their own group but better on the whole. Approval voting can thus favor compromise among competing groups. For example, workers may fear that a trade agreement would threaten their jobs, but they may also care about increased access to goods and about benefits to other workers elsewhere. If they were
offered enough options, they might approve a free trade agreement if they saw it as sufficiently beneficial for all. The same reasoning might extend to candidates. For example, in the 2000 U.S. presidential election, some people voted for Ralph Nader because he was the only candidate opposed to free trade, but they might have approved one of the others in an approval vote.

We note that approval voting is one of several alternative voting schemes. Other methods require ranking all the proposals. We believe that many of these methods would have the same effect as those we report here. The relevant feature of approval voting is that it allows voters to express some support for their second choice, which, in the relevant cases, is the one that is best for all.

In experiment 1, voting had no personal consequences. This is somewhat like the real situation since the perception that “one vote doesn’t matter” is widespread, and people tend to perceive their voting more as a matter of expression than as action with real consequences (Brennan and Lomasky 1993). The experiment thus shows that people are open to the kind of understanding that would lead to the reduction of parochialism. We did, however, show that approval voting can matter even when the consequences are real.

The benefits of approval voting depend on which proposals are put to a vote. If only two proposals were available, then approval voting would have no advantage over standard voting. Addition of a second Self proposal, similar to the first, could also drive the self-interested utility of Best below the mean and reduce its rate of approval. In this case, approval voting might be just as subject to parochialism as standard voting. Approval voting could never be more sensitive to parochialism, however.

Although approval voting works best when both competing groups are voting, it may also be beneficial when only one group is voting, as happens when the citizens of one nation vote on some proposal relevant to another nation. In this case, the scoring formula would not divide the Self votes by two, as we did here on the assumption that the two groups were equal in size. The Best proposal would have to have enough other advantages to make it attractive, so that many voters would approve it even if they also approved the Self proposal.

Parochialism is, in a way, an intermediate state between commitment to the self and commitment to humanity in general. Political action in favor of a group often hurts both the actor and humanity. If people understood this, self-interest might conspire with utilitarianism to keep parochial voters at home and let the utilitarians run the world.

REFERENCES

Baron, Altman / APPROVAL VOTING AND PAROCHIALISM

Confusion of group-interest and self-interest in parochial cooperation on behalf of a group. *Journal of Conflict Resolution* 45:283-96.
